3.8 Proceedings Paper

Implementation of a cone-beam backprojection algorithm on the Cell Broadband Engine processor

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.709238

关键词

computed tomography; backprojection; cell broadband engine; GPU; FPGA

向作者/读者索取更多资源

Tomographic image reconstruction is computationally very demanding. In all cases the backprojection represents the performance bottleneck due to the high operational count and due to the high demand put on the memory subsystem. In the past, solving this problem has lead to the implementation of specific architectures, connecting Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) to memory through dedicated high speed busses. More recently, there have also been attempt to use Graphic Processing Units (GPUs) to perform the backprojection step. Originally aimed at the gaming market, IBM, Toshiba and Sony have introduced the Cell Broadband Engine (CBE) processor, often considered as a multicomputer on a chip. Clocked at 3 GHz, the Cell allows for a theoretical performance of 192 GFlops and a peak data transfer rate over the internal bus of 200 GB/s. This performance indeed makes the Cell a very attractive architecture for implementing tomographic image reconstruction algorithms. In this study, we investigate the relative performance of a perspective backprojection algorithm when implemented on a standard PC and on the Cell processor. We compare these results to the performance achievable with FPGAs based boards and high end GPUs. The cone-beam backprojection performance was assessed by backprojecting a full circle scan of 512 projections of 1024x1024 pixels into a volume of size 512x512x512 voxels. It took 3.2 minutes on the PC (single CPU) and is as fast as 13.6 seconds on the Cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据