4.7 Article

A density functional study of methanol clusters

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct6002912

关键词

-

向作者/读者索取更多资源

The potential energy surfaces of methanol clusters, (CH3OH)(n), n = 2-12, have been studied using density functional theory at the B3LYP/6-31G(d) and higher levels of theory. Cyclic clusters in which n methanol molecules are joined in a ring structure formed by n hydrogen bonds are shown to be more stable than structures of the same number of methanol molecules where one or more methanol molecules are outside the ring and are hydrogen-bonded to oxygens of methanols in rings of n - 1, n - 2, and so forth. So-called chain structures are generally even less stable. Furthermore, the hydrogen-bonding energy per methanol molecule of the n-ring clusters is shown to converge to an asymptotic value of about 27 kJ/mol at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) after five to six methanols are included in the cluster. As expected, there are many minima on the potential energy surfaces of the methanol clusters, the number increasing rapidly with n. A cyclic cluster of five to six methanol molecules appears to be sufficient to mimic liquid behavior as far as vibrational frequencies are concerned.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据