3.8 Proceedings Paper

Compensation of acoustic attenuation for high resolution photoacoustic imaging with line detectors

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.700723

关键词

photoacoustic imaging; time reversal; line detector; acoustic attenuation; back-projection

资金

  1. Austrian Science Fund (FWF) [P18172-N02]
  2. FWF [Y123-INF]

向作者/读者索取更多资源

Photoacoustic imaging is based on the generation of acoustic waves in a semitransparent sample after illumination with short pulses of light or radio waves. The goal is to recover the spatial distribution of absorbed energy density inside the sample from acoustic pressure signals measured outside the sample (photoacoustic inverse problem). We have proposed a numerical method to calculate directly the time reversed field by retransmitting the measured pressure on the detection surface in reversed temporal order. This model-based time reversal method can solve the photoacoustic inverse problem exactly for an arbitrary closed detection surface. Recently we presented a set up which requires a single rotation axis and line detectors perpendicular to the rotation axis. Using a two-dimensional reconstruction method, such as time reversal in two dimensions, and applying the inverse two-dimensional radon transform afterwards gives an exact reconstruction of a three-dimensional sample with this set up. The resolution in photoacoustic imaging is limited by the acoustic bandwidth and therefore by acoustic attenuation, which can be substantial for high frequencies. This effect is usually ignored in reconstruction algorithms but has a strong impact on the resolution of small structures. It is demonstrated that the model based time reversal method allows to partly compensate this effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据