4.2 Article

Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response

期刊

MICROBIOLOGY-SGM
卷 153, 期 -, 页码 270-280

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.29262-0

关键词

-

向作者/读者索取更多资源

Propionibacterium freudenreichii accumulates high levels of trehalose, especially in response to stress. The pathways for trehalose metabolism were characterized, and their roles in response to osmotic, oxidative and acid stress were studied. Two pathways were identified: the trehalose-6-phosphate synthase/phosphatase (OtsA-OtsB) pathway, and the trehalose synthase (TreS) pathway. The former was used for trehalose synthesis, whereas the latter is proposed to operate in trehalose degradation. The activities of OtsA, OtsB and TreS were detected in cell extracts; the corresponding genes were identified, and the recombinant proteins were characterized in detail. In crude extracts of P. freudenreichii, OtsA was specific for ADP-glucose, in contrast to the pure recombinant OtsA, which used UDP-, GDP- and TDP-glucose, in addition to ADP-glucose. Moreover, the substrate specificity of OtsA in cell extracts was lost during purification, and the recombinant OtsA became specific to ADP-glucose upon incubation with a dialysed cell extract. The level of OtsA was enhanced (approximately twofold) by osmotic, oxidative and acid stress, whereas the level of TreS remained constant, or it decreased, under identical stress conditions. Therefore, the OtsA-OtsB pathway plays an important role in the synthesis of trehalose in response to stress. It is most likely that trehalose degradation proceeds via TreS to yield maltose, which is subsequently catabolized via amylomaltase activity. Hydrolytic activities that are potentially involved in trehalose degradation (trehalase, trehalose phosphorylase, trehalose-6-phosphate phosphprylase and trehalose-6-phosphate hydrolase) were not present. The role of trehalose as a common response to three distinct stresses is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据