4.7 Article

Experimental microchannel heat sink performance studies using nanofluids

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2006.03.009

关键词

microchannel heat sink (MCHS); nanofluid; particle volume fraction and particle agglomeration

向作者/读者索取更多资源

In this study, microchannel heat sink (MCHS) performance using nanofluids as coolants is addressed. We first carried out a simple theoretical analysis that indicated more energy and lower MCHS wall temperature could be obtained under the assumption that heat transfer could be enhanced by the presence of nanoparticles. Experiments were then performed to verify the theoretical predictions. A silicon MCHS was made and CuO-H2O mixtures without a dispersion agent were used as the coolants. The CuO particle volume fraction was in the range of 0.2 to 0.4%. It was found that nanofluid-cooled MCHS could absorb more energy than water-cooled MCHS when the flow rate was low. For high flow rates, the heat transfer was dominated by the volume flow rate and nanoparticles did not contribute to the extra heat absorption. The measured MCHS wall temperature variations agreed with the theoretical prediction for low flow rate. For high flow rate, the measured MCHS wall temperatures did not completely agree with the theoretical prediction due to the particle agglomeration and deposition. It was also found that raising the nanofluid bulk temperature could prevent the particles from being agglomerated into larger scale particle clusters. The experimental result also indicated that only slightly increase in pressure drop due to the presence of nanoparticles in MCHS operation. (C) 2006 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据