4.6 Article

Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 1, 页码 773-781

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M606862200

关键词

-

向作者/读者索取更多资源

Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 mu g/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 +/- 21%, mean S.D.) and 93% (93 +/- 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Gal beta 1,3GalNAc-alpha (TF)) but did not affect adhesion of MUC1-negative HCA1.7- cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-beta 1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据