4.6 Article

Tuning plasmons on nano-structured substrates for NIR-SERS

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 1, 页码 104-109

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b611803h

关键词

-

向作者/读者索取更多资源

Surface-Enhanced Raman Spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Colloidal crystal-templated 'inverse opal' nanostructured gold films have been demonstrated to be excellent SERS substrates by various researchers around the globe. However, visible excitation laser sources commonly used in SERS experiments can cause photochemical reactions on the surface as well as fluorescence from the adsorbed molecules. A way to circumvent this possibility is the use of Near Infra-Red (NIR) laser sources. This demands appropriate design of substrates for NIR-SERS in order to obtain maximum enhancement of signals from analytes. In the current paper, we use systematic variation of sphere size and electrochemical control over film height to tune plasmons on such nanovoid substrates. We use plasmon maps as a tool for predicting NIR-SERS enhancements recorded with a 1064 nm laser source for benzenethiol as the probe molecule. Direct correlation is observed between Raman enhancements and plasmonic resonances with ingoing and outcoming radiation. Our study demonstrates the feasibility of plasmon engineering and the predictive power of their mapping on our substrates. It also demonstrates the ability to design reproducible NIR-SERS substrates and its empirical fruition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据