4.5 Article

Towards a detailed understanding of bacterial metabolism -: Spectroscopic characterization of Staphylococcus epidermidis

期刊

CHEMPHYSCHEM
卷 8, 期 1, 页码 124-137

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.200600507

关键词

-

向作者/读者索取更多资源

Bacteria are a major cause of infection. To fight disease and growing resistance, research interest is focused on understanding bacterial metabolism. For a detailed evaluation of the involved mechanisms, a precise knowledge of the molecular composition of the bacteria is required. In this article, various vibrational spectroscopic techniques are applied to comprehensively characterize, on a molecular level, bacteria of the strain Staphylococcus epidermidis, an opportunistic pathogen which has evolved to become a major cause of nosocomial infections. IR absorption spectroscopy reflects the overall chemical composition of the cells, with major focus on the protein vibrations. Smaller sample volumes-down to a single cell-are sufficient to probe the overall chemical composition by means of micro-Roman spectroscopy. The nucleic-acid and aromatic amino-acid moieties are almost exclusively explored by UV resonance Raman spectroscopy. In combination with statistical evaluation methods [hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA)], the protein and nucleic-acid components that change during the different bacterial growth phases can be identified from the in vivo vibrational spectra. Furthermore, tip-enhanced Raman spectroscopy (TERS) provides insight into the surface structures and follows the dynamics of the polysaccharide and peptide components on the bacterial cells with a spatial resolution below the diffraction limit. This might open new ways for the elucidation of host-bacteria and drug-bacteria interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据