4.8 Article

Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0608055104

关键词

conical intersection; DNA photophysics; excited-state dynamics

资金

  1. NIGMS NIH HHS [R01 GM064563-05, R01 GM64563, R01 GM064563] Funding Source: Medline

向作者/读者索取更多资源

The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in < 1 ps to two nonradiative decay channels within the manifold of singlet states. The first is the subpicosecond internal conversion channel first characterized in 2000. The second channel involves passage through a dark intermediate state assigned to a lowest-energy (1)n pi* state. Approximately 10-50% of all photoexcited pyrimidine bases decay via the (1)n pi* state, which has a lifetime of 10-150 ps. Three- to 6-fold-longer lifetimes are seen for pyrimidine nucleotides and nucleosides than for the corresponding free bases, revealing an unprecedented effect of ribosyl substitution on electronic energy relaxation. A small fraction of the (1)n pi* population is proposed to undergo intersystem crossing to the lowest triplet state in competition with vibrational cooling, explaining the higher triplet yields observed for pyrimidine versus purine bases at room temperature. Some simple correlations exist between yields of the (1)n pi* state and yields of some pyrimidine photoproducts, but more work is needed before the photochemical consequences of this state can be definitively determined. These findings lead to a dramatically different picture of electronic energy relaxation in single pyrimidine bases with important ramifications for understanding DNA photostability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据