4.8 Article

Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0610007104

关键词

cancer; heme enzymes; immunomodulation; indoleamine 2,3-dioxygenase

资金

  1. NIGMS NIH HHS [U54 GM074958, P50 GM62413, P50 GM062413] Funding Source: Medline

向作者/读者索取更多资源

Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) constitute an important, yet relatively poorly understood, family of heme-containing enzymes. Here, we report extensive structural and biochemical studies of the Xanthomonas campestris TOO and a related protein SO4414 from Shewanella oneidensis, including the structure at 1.6-angstrom resolution of the catalytically active, ferrous form of TOO in a binary complex with the substrate L-Trp. The carboxylate and ammonium moieties of tryptophan are recognized by electrostatic and hydrogen-bonding interactions with the enzyme and a propionate group of the heme, thus defining the L-stereospecificity. A second, possibly allosteric, L-Trp-binding site is present at the tetramer interface. The sixth coordination site of the heme-iron is vacant, providing a dioxygen-binding site that would also involve interactions with the ammonium moiety Of L-Trp and the amide nitrogen of a glycine residue. The indole ring is positioned correctly for oxygenation at the C2 and C3 atoms. The active site is fully formed only in the binary complex, and biochemical experiments confirm this induced-fit behavior of the enzyme. The active site is completely devoid of water during catalysis, which is supported by our electrochemical studies showing significant stabilization of the enzyme upon substrate binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据