4.7 Article

An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction

期刊

WATER RESOURCES RESEARCH
卷 43, 期 1, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005WR004745

关键词

-

向作者/读者索取更多资源

The conventional treatment of uncertainty in rainfall-runoff modeling primarily attributes uncertainty in the input-output representation of the model to uncertainty in the model parameters without explicitly addressing the input, output, and model structural uncertainties. This paper presents a new framework, the Integrated Bayesian Uncertainty Estimator (IBUNE), to account for the major uncertainties of hydrologic rainfall-runoff predictions explicitly. IBUNE distinguishes between the various sources of uncertainty including parameter, input, and model structural uncertainty. An input error model in the form of a Gaussian multiplier has been introduced within IBUNE. These multipliers are assumed to be drawn from an identical distribution with an unknown mean and variance which were estimated along with other hydrological model parameters by a Monte Carlo Markov Chain (MCMC) scheme. IBUNE also includes the Bayesian model averaging (BMA) scheme which is employed to further improve the prediction skill and address model structural uncertainty using multiple model outputs. A series of case studies using three rainfall-runoff models to predict the streamflow in the Leaf River basin, Mississippi, are used to examine the necessity and usefulness of this technique. The results suggest that ignoring either input forcings error or model structural uncertainty will lead to unrealistic model simulations and incorrect uncertainty bounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据