4.7 Article

Reinforcement learning signals predict future decisions

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 2, 页码 371-378

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4421-06.2007

关键词

reward prediction error; ERN; decision-making; reinforcement learning; dopamine; event-related potential

向作者/读者索取更多资源

Optimal behavior in a competitive world requires the flexibility to adapt decision strategies based on recent outcomes. In the present study, we tested the hypothesis that this flexibility emerges through a reinforcement learning process, in which reward prediction errors are used dynamically to adjust representations of decision options. We recorded event-related brain potentials (ERPs) while subjects played a strategic economic game against a computer opponent to evaluate how neural responses to outcomes related to subsequent decision-making. Analyses of ERP data focused on the feedback-related negativity (FRN), an outcome-locked potential thought to reflect a neural prediction error signal. Consistent with predictions of a computational reinforcement learning model, we found that the magnitude of ERPs after losing to the computer opponent predicted whether subjects would change decision behavior on the subsequent trial. Furthermore, FRNs to decision outcomes were disproportionately larger over the motor cortex contralateral to the response hand that was used to make the decision. These findings provide novel evidence that humans engage a reinforcement learning process to adjust representations of competing decision options.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据