4.7 Review

High-order electron-correlation methods with scalar relativistic and spin-orbit corrections

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 126, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2423005

关键词

-

向作者/读者索取更多资源

An assortment of computer-generated, parallel-executable programs of ab initio electron-correlation methods has been fitted with the ability to use relativistic reference wave functions. This has been done on the basis of scalar relativistic and spin-orbit effective potentials and by allowing the computer-generated programs to handle complex-valued, spinless orbitals determined by these potentials. The electron-correlation methods that benefit from this extension are high-order coupled-cluster methods (up to quadruple excitation operators) for closed- and open-shell species, coupled-cluster methods for excited and ionized states (up to quadruples), second-order perturbation corrections to coupled-cluster methods (up to triples), high-order perturbation corrections to configuration-interaction singles, and active-space (multireference) coupled-cluster methods for the ground, excited, and ionized states (up to active-space quadruples). A subset of these methods is used jointly such that the dynamical correlation energies and scalar relativistic effects are computed by a lower-order electron-correlation method with more extensive basis sets and all-electron relativistic treatment, whereas the nondynamical correlation energies and spin-orbit effects are treated by a higher-order electron-correlation method with smaller basis sets and relativistic effective potentials. The authors demonstrate the utility and efficiency of this composite scheme in chemical simulation wherein the consideration of spin-orbit effects is essential: ionization energies of rare gases, spectroscopic constants of protonated rare gases, and photoelectron spectra of hydrogen halides. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据