4.8 Article

A molecular beacon DNA microarray system for rapid detection of E-coli O157:H7 that eliminates the risk of a false negative signal

期刊

BIOSENSORS & BIOELECTRONICS
卷 22, 期 6, 页码 1041-1047

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.04.032

关键词

Escherichia coli O157 : H7; DNA hybridization; fluorescence detection platform; FRET (Forster or fluorescence resonance energy transfer); microarray; molecular beacon

向作者/读者索取更多资源

A DNA hybridization based optical detection platform for the detection of foodborne pathogens has been developed with virtually zero probability of the false negative signal. This portable, low-cost and real-time assaying detection platform utilizes the color changing molecular beacon as a probe for the optical detection of the target sequence. The computer-controlled detection platform exploits the target hybridization induced change of fluorescence color due to the Foster (fluorescence) resonance energy transfer (FRET) between a pair of spectrally shifted fluorophores conjugated to the opposite ends of a beacon (oligonucleotide probe). Unlike the traditional fluorophore-quencher beacon design, the presence of two fluorescence molecules allows to actively visualize both hybridized and unhybridized states of the beacon. This eliminates false negative signal detection characteristic for the fluorophore-quencher beacon where bleaching of the fluorophore or washout of a beacon is indistinguishable from the absence of the target DNA sequence. In perspective, the two-color design allows also to quantify the concentration of the target DNA in a sample down to <= 1 ng/mu l. The new design is suitable for simultaneous reliable detection of hundreds of DNA target sequences in one test run using a series of beacons immobilized on a single substrate in a spatial format. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据