4.6 Article

Cathodoluminescence, photoluminescence, and reflectance of an aluminum nitride layer grown on silicon carbide substrate

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2423141

关键词

-

向作者/读者索取更多资源

Aluminum nitride (AlN) has an ultrawide direct band gap of approximately 6.1 eV at low temperature and is fully miscible with gallium nitride. This makes AlN a promising material for ultraviolet optoelectronic applications. Here, we apply cathodoluminescence, photoluminescence, and reflectance spectroscopies to the same AlN layer grown by metalorganic vapor phase epitaxy on silicon carbide. In cathodoluminescence and photoluminescence, we observe strong near band edge emission at approximate to 6 eV. The contribution appearing at an energetic position of 5.983 eV could be identified as A free exciton recombination, strongly redshifted due to strain effects. The spectra obtained by reflectance measurements show features at 5.985 eV and approximate to 6.2 eV which we assign to the A exciton-in accordance to our luminescence measurements-and a combination of the B and C free excitons, respectively. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据