4.4 Article

Chemical fragments in real space:: Definitions, properties, and energetic decompositions

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 28, 期 1, 页码 161-184

出版社

WILEY
DOI: 10.1002/jcc.20469

关键词

chemical bond; energy partition; atoms in molecules; atoms in real space; fuzzy atoms

向作者/读者索取更多资源

The physical and chemical meaning of real space molecular fragments resulting from arbitrary partitions of the density is reviewed under a common unifying formalism. Both fuzzy (interpenetrating) and non-fuzzy (exhaustive) decompositions are treated on an equal basis. Density decompositions are consistently generalized to compatible density matrix partitions by using Li and Parr's ideas (Li and Parr J Chem Phys 1986, 84, 1704), and these are carried onto an energy partition. It is argued that the merits of a given decomposition should be judged against both the charge and the energetic image it provides. Atomic partitions are used to show how the interacting quantum atoms approach (IQA) allows us to cope with the most important energy cancellations of quantum chemistry. Binding results from a trade-off between atomic (or fragment) energy deformations with respect to a reference and interatomic (interfragment) interactions. Deformation energies are divided into charge transfer and redistribution terms and their relative roles are analyzed. A number of systems are compared against the fuzziness of different density decompositions. The results consistently show that fuzzy partitions tend to give low atomic net charges and enhanced covalency, while exhaustive partitions generate larger net charges and smaller covalencies, across a wide range of bonding regimes. (C) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据