4.6 Article

Quantum chemical modelling of oxygen reduction on cobalt hydroxide and oxyhydroxide

期刊

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
卷 599, 期 2, 页码 295-312

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2006.05.009

关键词

oxygen reduction; hydrogen peroxide; cobalt oxyhydroxide; cobalt hydroxide; quantum chemistry; density functional theory; cluster models

向作者/读者索取更多资源

Quantum chemistry has been employed to analyse the experimentally observed production of H2O2 during electrochemical reduction of O-2 on cobalt oxyhydroxide, CoOOH(s). The site for O-2 reduction was modelled using both small hydrated Co hydroxide clusters and periodic slab models of a step edge site. A catalytic site was found for the Co(II) model cluster, Co(OH)(2)(H2O)(7), which was also found in the step edge models. However, the site was found to bind O-3(2) very loosely and the Co(II) site alone displayed no electron affinity. The reduction reaction was initiated by adding an electron with O-2 present at the Co(II) site. This produces a superoxide ligand, which upon protonation is able to undergo further reduction to HO2- as Co(III) is formed at the site. Adding a second electron leads to detachment of HO2- as Co(II) is restored. A catalytic redox cycle is presented based on this understanding. The reduction behaviour explains why O-2 is readily reduced on p-type CoOOH at potentials where H2O2 is reduced at a low rate only. O-2 has the ability to introduce new charge carriers into the electrode, which means that the current is limited by charge transfer kinetics and not the electrical properties of the electrode material. H2O2 cannot produce additional charge carriers, and the electrode material limits the current. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据