4.6 Article

Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2426904

关键词

-

向作者/读者索取更多资源

Plasma waves in the two-dimensional electron-hole system in a graphene-based heterostructure controlled by a highly conducting gate are studied theoretically. The energy spectra of two-dimensional electrons and holes are assumed to be conical (neutrinolike), i.e., corresponding to their zero effective masses. Using the developed model, we calculate the spectrum of plasma waves (spatio-temporal variations of the electron and hole densities and the self-consistent electric potential). We find that the sufficiently long plasma waves exhibit a linear (soundlike) dispersion, with the wave velocity determined by the gate layer thickness, the gate voltage, and the temperature. The plasma wave velocity in graphene heterostructures can significantly exceed the plasma wave velocity in the commonly employed semiconductor gated heterostructures. The gated graphene heterostructures can be used in different voltage tunable terahertz devices which utilize the plasma waves. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据