4.8 Article

HIV-susceptible transgenic rats allow rapid preclinical testing of antiviral compounds targeting virus entry or reverse transcription

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0607414104

关键词

animal model; drugs; efficacy trial

资金

  1. NIMH NIH HHS [R01 MH064396, R01 MH 64396] Funding Source: Medline

向作者/读者索取更多资源

The current testing of anti-HIV drugs is hampered by the lack of a small animal that is readily available and easy to handle; can be infected systemically with HIV type 1 (HIV-1); harbors the major HIV-1 target cells in a physiological frequency, organ distribution, and activation state; and is established as a pharmacological model. Here, we explored the potential of outbred Sprague-Dawley rats that transgenically express the HIV-1 receptor complex on CD4 T cells and macrophages as a model for the preclinical evaluation of inhibitors targeting virus entry or reverse transcription. The concentrations of the peptidic fusion inhibitor enfuvirtide or the nonnucleoside reverse transcriptase inhibitor efavirenz required to inhibit HIV-1 infection of cultured primary CD4 T cells and macrophages from human CD4 and CCR5-transgenic rats differed by no more than 3-fold from those required for human reference cultures. Prophylactic treatment of double-transgenic rats with a weight-adapted pediatric dosing regimen for either enfuvirtide (s.c., twice-daily) or efavirenz (oral, once-daily) achieved a 92.5% or 98.8% reduction, respectively, of the HIV-1 cDNA load in the spleen 4 days after i.v. HIV-1 challenge. Notably, a once-daily dosing regimen for enfuvirtide resulted in a approximate to 5-fold weaker inhibition of infection, unmasking the unfavorable pharmacokinetic characteristics of the synthetic peptide in the context of an efficacy trial. This work provides proof of principle that HIV-susceptible transgenic rats can allow a rapid and predictive preclinical evaluation of the inhibitory potency and of the pharmacokinetic properties of antiviral compounds targeting early steps in the HIV replication cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据