4.6 Article

Comparison of dye-sensitized ZnO and TiO2 solar cells:: Studies of charge transport and carrier lifetime

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 2, 页码 1035-1041

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065948f

关键词

-

向作者/读者索取更多资源

Nanocrystalline particles of ZnO and TiO2 of approximately equal size (-15 nm) were used to prepare mesoporous electrodes for dye-sensitized solar cells. Electron transport in the solar cells was studied using intensity-modulated photocurrent spectroscopy and revealed very similar results for ZnO and TiO2. Apparent activation energies for electron transport in nanostructured ZnO of <= 0.1 eV were calculated from the temperature dependence of transport times under short-circuit conditions. The lifetime of electrons in the nanostructured semiconductors was evaluated from open-circuit voltage decay and intensity-modulated photovoltage spectroscopy. Significantly longer lifetimes were obtained with ZnO. Despite the reduced recombination, ZnO-based solar cells performed worse than TiO2 cells, which was attributed to a lower electron injection efficiency from excited dye molecules and/or a lower dye regeneration efficiency. The internal voltage in the nanostructured ZnO film under short-circuit conditions was about 0.23 V lower than the open-circuit potential at the same light intensity. Results may be explained using a multiple trapping model, but as electrons are usually only shallowly trapped in ZnO, an alternative view is presented. If there is significant doping of the ZnO, resulting band bending in the nanocrystals will form energy barriers for electron transport and recombination that can explain the observed properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据