4.6 Article

Aspects of self-similar current distributions resulting from the plasma filamentation instability

期刊

NEW JOURNAL OF PHYSICS
卷 9, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/9/1/010

关键词

-

向作者/读者索取更多资源

Colliding plasmas can form current filaments that are magnetically confined and interact through electromagnetic fields during the nonlinear evolution of this filamentation instability. A nonrelativistic and a relativistic electron flow are examined. Two-dimensional (2D) particle-in-cell (PIC) simulations evolve the instability in a plane orthogonal to the flow vector and confirm that the current filaments move, merge through magnetic reconnection and evolve into current sheets and large flux tubes. The current filaments overlap over limited spatial intervals. Electrons accelerate in the overlap region and their final energy distribution decreases faster than exponential. The spatial power spectrum of the filaments in the flow-aligned current component can be approximated by a power-law during the linear growth phase. This may reflect a phase transition. The power spectrum of the current component perpendicular to the flow direction shows a power-law also during the nonlinear phase, possibly due to preferential attachment. The power-law distributed power spectra evidence self-similarity over a limited scale size and the wavenumber of the maximum of the spatial power spectrum of the filament distribution decreases linearly in time. Power-law correlations of velocity fields, which could be connected to the current filaments, may imply super-diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据