4.7 Article

Cosmological constraints from the Red-Sequence Cluster Survey

期刊

ASTROPHYSICAL JOURNAL
卷 655, 期 1, 页码 128-134

出版社

IOP PUBLISHING LTD
DOI: 10.1086/509909

关键词

cosmological parameters; galaxies : clusters : general; methods : data analysis

向作者/读者索取更多资源

We present a first cosmological analysis of a refined cluster catalog from the Red-Sequence Cluster Survey ( RCS). The input cluster sample is derived from the deepest 72.07 deg(2) of the RCS images, which probe to the highest redshift and lowest mass limits. The catalog contains 956 clusters over 0.35 < z < 0.95, limited by cluster richness and richness error. The calibration of the survey images has been extensively cross-checked against publicly available Sloan Digital Sky Survey imaging, and the cluster redshifts and richness that result from this well-calibrated subset of data are robust. We analyze the cluster sample via a general self-calibration technique. We fit simultaneously for the matter density, Omega(m), the normalization of the power spectrum, sigma(8), and four parameters describing the calibration of cluster richness to mass, its evolution with redshift, and scatter in the mass-richness relation. The principal goal of this general analysis is to establish the consistency ( or lack thereof) between the fitted parameters ( both cosmological and cluster mass observables) and available results on both from independent measures. From an unconstrained analysis, the derived values of Omega(m) and sigma(8) are 0.31(-0.10)(+0. 11) and 0.67(-0.13)(+0: 18) , respectively. An analysis including Gaussian priors on the slope and zero point of the mass-richness relation gives very similar results: 0.30(-0.11)(+0.12) and 0.70(-0.15)(+0.27) . Both analyses are in acceptable agreement with the current literature. The derived parameters describing the mass- richness relation in the unconstrained fit are also eminently reasonable and in good agreement with existing follow- up data on both the RCS-1 and other cluster samples. Our results directly demonstrate that future surveys ( optical and otherwise), with much larger samples of clusters, can give constraints competitive with other probes of cosmology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据