4.5 Article

Insights into Hofmeister mechanisms: Anion and degassing effects on the cloud point of dioctanoylphosphatidylcholine/water systems

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 3, 页码 589-597

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065769y

关键词

-

向作者/读者索取更多资源

Water dispersions of dioctanoylphosphatidylcholine (diC(8)PC) exhibit upper consolute curves. How they are affected by some salts and other additives (D2O, urea) has already been explored and the phase separation has been interpreted within the framework of the Blankschtein-Thurston-Benedek (BTB) model. This deduces the chemical potential gain in micellar growth (Delta mu) and the intermicellar interaction coefficient (C) as fitting parameters from the coexistence curves. But, the specific mechanisms that drive such phenomena have remained obscure. To identify these mechanisms, we investigate the effects of a range of anions on the cloud points of diC(8)PC/H2O systems and extract the phenomenological parameters of the BTB model. We show how these parameters, for micellar growth, i.e., surface, intramolecular interactions, and for interaggregate interactions, i.e., bulk solute effects, are connected to anionic polarizabilities. Nonelectrostatic (NES) quantum mechanical fluctuation (Lifshitz or dispersion) forces missing from conventional theories are then shown to regulate lyotropic Hofmeister effects, both explicitly and implicitly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据