4.7 Article Proceedings Paper

Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 139, 期 3, 页码 506-513

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2006.02.044

关键词

geopolymerization; aluminosilicates; solidification; immobilization

向作者/读者索取更多资源

High-performance materials for construction, waste immobilisation and an ever-growing range of niche applications are produced by the reaction sequence known as 'geopolymerisation'. In this process, an alkaline activating solution reacts with a solid aluminosilicate source, with solidification possible within minutes and very rapid early strength development. Geopolymers have been observed to display remarkable chemical and thermal stability, but due to their largely X-ray amorphous nature have only recently been accurately characterised. It has previously been shown that both fly ash and ground granulated blast furnace slag are highly effective as solid constituents of geopolymer reaction slurries, providing readily soluble alumina and silica that undergo a dissolution-reorientation-solidification process to form a geopolymeric material. Here a conceptual model for geopolymerisation is presented, allowing elucidation of the individual mechanistic steps involved in this complex and rapid process. The model is based on the reactions known to occur in the weathering of aluminosilicate minerals under alkaline conditions, which occur in a highly accelerated manner under the conditions required for geopolymerisation. Transformation of the waste materials to the mixture of gel and nanocrystalline/semicrystalline phases comprising the geopolymeric product is described. Presence of calcium in the solid waste materials affects the process of geopolymerisation by providing extra nucleation sites for precipitation of dissolved species, which may be used to tailor setting times and material properties if desired. Application of geopolymer technology in remediation of toxic or radioactive contaminants will depend on the ability to analyse and predict long-term durability and stability based on initial mix formulation. The model presented here provides a framework by which this will be made possible. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据