4.8 Article

In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications

期刊

BIOMATERIALS
卷 28, 期 6, 页码 1236-1247

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.10.002

关键词

tumor targeting; radionuclide imaging; self-assembled nanoparticles; angiogenesis; drug delivery

资金

  1. National Research Foundation of Korea [mostR11-1999-064-00000-0, R11-1999-064-08003-0, 2006-08331, 과C6A2605] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The development of more selective delivery systems for cancer diagnosis and chemotherapy is one of the most important goals of current anticancer research. The purpose of this study is to evaluate various self-assembled nanoparticles as candidates to shuttle radionuclide and/or drugs into tumors and to investigate the mechanisms underlying the tumor targeting with self-assembled nanoparticles. By combining different hydrophobic moieties and hydrophilic polymer backbones, various self-assembled nanoparticles were prepared, and their in vivo distributions in tumor-bearing mice were studied by radionuclide imaging. One type of nanoparticles (fluorescein isothiocyanate-conjugated glycol chitosan (FGC) nanoparticles) exhibited highly selective tumoral localization. Scintigraphic images obtained I day after the intravenous injection of FGC nanoparticles clearly delineated the tumor against adjacent tissues. The mechanisms underlying the tumor targeting with self-assembled nanoparticles were investigated in terms of the physicochemical properties of nanoparticles and tumor microenvironments. FGC nanoparticles were preferentially localized in perivascular regions, implying their extravasation to tumors through the hyperpermeable tumor vasculature. The magnitude and pattern of tumoral distribution of self-assembled nanoparticles were influenced by several key factors -(i) in vivo colloidal stability: nanoparticles should maintain their intact nanostructures in vivo for a long period of time, (ii) particle size, (iii) intracellular uptake of nanoparticle: fast cellular uptake greatly facilitates the tumor targeting, (iv) tumor angiogenesis: pathological angiogenesis permits access of nanoparticles to tumors. We believe that this work can provide insight for the engineering of nanoparticles and be extended to cancer therapy and diagnosis, so as to deliver multiple therapeutic agents and imaging probes at high local concentrations. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据