4.7 Article

Fluctuating hydrodynamic modeling of fluids at the nanoscale

期刊

PHYSICAL REVIEW E
卷 75, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.026307

关键词

-

向作者/读者索取更多资源

A good representation of mesoscopic fluids is required to combine with molecular simulations at larger length and time scales [De Fabritiis , Phys. Rev. Lett. 97, 134501 (2006)]. However, accurate computational models of the hydrodynamics of nanoscale molecular assemblies are lacking, at least in part because of the stochastic character of the underlying fluctuating hydrodynamic equations. Here we derive a finite volume discretization of the compressible isothermal fluctuating hydrodynamic equations over a regular grid in the Eulerian reference system. We apply it to fluids such as argon at arbitrary densities and water under ambient conditions. To that end, molecular dynamics simulations are used to derive the required fluid properties. The equilibrium state of the model is shown to be thermodynamically consistent and correctly reproduces linear hydrodynamics including relaxation of sound and shear modes. We also consider nonequilibrium states involving diffusion and convection in cavities with no-slip boundary conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据