4.3 Article Proceedings Paper

Orthodontic materials research and applications: Part 2. Current status and projected future developments in materials and biocompatibility

出版社

MOSBY-ELSEVIER
DOI: 10.1016/j.ajodo.2005.12.029

关键词

-

向作者/读者索取更多资源

The purpose of this 2-part opinion article was to project the developments expected to occur in the next few years in orthodontic materials research and applications. Part 1 reviewed developments in bonding to enamel. Part 2 looks at other orthodontic materials applications and explores emerging research strategies for probing the biological properties of materials. In the field of metallic brackets, expansion of the use of titanium alloys with improved hardness and nickel-free steels with better corrosion resistance and increased hardness is expected. Manufacturing techniques might be modified to include laser-welding methods and metal injection molding. Esthetic bracket research will involve the synthesis of high-crystallinity biomedical polymers with increased hardness and stiffness, decreased water sorption, and improved resistance to degradation. New plastic brackets might incorportate ceramic wings. Fiber-reinforced composite archwires, currently experimental, could soon be commercially available, and long-term applications of shape-memory plastics might become viable. Advancements in elastomeric materials will result in polymers with reduced relaxation, broader use of fluoride-releasing elastomers with decreased relaxation, and large-scale film coating of elastomers to decrease reactivity, water sorption, and degradation. Finally, biocompatibility assessments will incorporate testing of potential endocrinological action. New polymer formulations might be tested in adhesive and plastic bracket manufacturing, based on benzoic ring-free monomers to avoid the adverse effects of the estrogenic molecule bisphenol-A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据