4.7 Article

Effects of frozen storage temperature on the elasticity of tendons from a small murine model

期刊

ANIMAL
卷 4, 期 9, 页码 1613-1617

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1751731110000698

关键词

frozen storage temperature; strength; stiffness; strain energy; collagen

资金

  1. NTU
  2. EU
  3. French Ministere des Affaires Etrangeres et Europeennes

向作者/读者索取更多资源

The basic mechanism of reinforcement in tendons addresses the transfer of stress, generated by the deforming proteoglycan (PG)rich matrix, to the collagen fibrils. Regulating this mechanism involves the interactions of PGs on the fibril with those in the surrounding matrix and between PGs on adjacent fibrils. This understanding is key to establishing new insights on the biomechanics of tendon in various research domains. However, the experimental designs in many studies often involved long sample preparation time. To minimise biological degradation the tendons are usually stored by freezing. Here, we have investigated the effects of commonly used frozen storage temperatures on the mechanical properties of tendons from the tail of a murine model (C57BL6 mouse). Fresh (unfrozen) and thawed samples, frozen at temperatures of -20 degrees C and -80 degrees C, respectively, were stretched to rupture. Freezing at -20 degrees C revealed no effect on the maximum stress (sigma, stiffness (E), the corresponding strain (epsilon) at sigma and strain energy densities up to epsilon(u) and from epsilon until complete rupture (u(p)). On the other hand, freezing at -80 degrees C led to higher sigma, E and u; epsilon and u(p) were unaffected. The results implicate changes in the long-range order of radially packed collagen molecules in fibrils, resulting in fibril rupture at higher stresses, and changes to the composition of extra fibrillar matrix, resulting in an increase in the interaction energy between fibrils via collagen-bound PGs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据