4.7 Article Proceedings Paper

Sounding-derived parameters associated with large hail and tornadoes in the Netherlands

期刊

ATMOSPHERIC RESEARCH
卷 83, 期 2-4, 页码 473-487

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2005.08.006

关键词

convective storm; radiosonde; Tornado; hail; The Netherlands

向作者/读者索取更多资源

A study is presented focusing on the potential value of parameters derived from radiosonde data or data from numerical atmospheric models for the forecasting of severe weather associated with convective storms. Parameters have been derived from soundings in the proximity of large hail, tornadoes (including tornadoes over water: waterspouts) and thunderstorms in the Netherlands. 66,365 radiosonde soundings from six stations in and around the Netherlands between 1 Dec. 1975 to 31 Aug. 2003 were classified as being associated or not associated with these weather phenomena using observational data from voluntary observers, the Dutch National Meteorological Institute (KNMI) and lightning data from the U.K. Met. Office. It was found that instability as measured by the Lifted Index or CAPE and 0-6 km wind shear independently have considerable skill in distinguishing environments of large hail and of non-hail-producing thunderstorms. It was also found that CAPE released below 3 km above ground level is on average high near waterspouts and weak tornadoes that mostly occur with low shear in the lowest 1 km above the Earth's surface. On the other hand, low-level shear is strong in environments of stronger (F1 and F2) tornadoes and increases with increasing F-scale. This is consistent with the notion that stretching of pre-existing vertical vorticity is the most important mechanism for the formation of weak tornadoes while the tilting of vorticity is more important with stronger tornadoes. The presented results may assist forecasters to assess the likelihood of severe hail or tornadoes. (c) 2006 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据