3.8 Article

Living markers for actin block myosin-dependent motility of plant organelles and auxin

期刊

CELL MOTILITY AND THE CYTOSKELETON
卷 64, 期 2, 页码 69-81

出版社

WILEY-LISS
DOI: 10.1002/cm.20164

关键词

actin; auxin transport; cytoplasmic streaming; timbrin; myosin; talin

向作者/读者索取更多资源

Expression-based techniques using recombinant actin-binding proteins (ABPs) have been developed as advantageous means of visualising actin filaments. As actin function is linked to the movement of cellular cargoes, and overexpression of ABPs may compete with endogenous cytoskeletal proteins, such as myosins, secondary effects on cellular motility might be observed during actin visualisation. Cytoplasmic streaming and auxin transport were chosen as examples of cargo movement and investigated in two Arabidopsis thaliana lines stably transformed with fluorescently labelled talin (GFP-mTn) or fimbrin (GFP-FABD2). In both lines, the maximal streaming velocity of organelles was reduced to 80% in hypocotyl epidermal cells, where actin was broadly equally labelled by both ABPs. In contrast, observations of streaming and actin organisation during treatments with cytochalasin D (CD) suggested GFP-mTn-labelled actin to remain more stable. Furthermore, basipetal auxin transport was undisturbed in the GFP-FABD2 line but reduced by GFP-mTn. Remarkably, treatments with CD and 2,3-butanedione monoxime, which immobilizes myosin by impairing its ATPase, produced not only failures in organelle movement but also in basipetal auxin transport in the wild-type. These observations suggest that myosin is involved in processes of auxin translocation. In parallel, reduced motility in transgenic plants may be explained by a disturbed acto-myosin interplay, if overexpressed ABPs block the processive movement of myosin along actin filaments. This report shows that the use of live markers for actin visualisation may affect motility of cellular compounds and underlines the general need for critical investigation of actin-related processes in wild-type as well as transgenic plants prior to further interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据