4.7 Article

Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6

期刊

NEUROBIOLOGY OF DISEASE
卷 25, 期 2, 页码 401-411

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2006.10.007

关键词

malondialdehyde; MnSOD; glutathione; mitochondria; oxidative stress; PINK1; PARK6; fibroblasts

向作者/读者索取更多资源

Oxidative stress and protein aggregation are biochemical hallmarks of Parkinson's disease (PD), a frequent sporadic late-onset degenerative disorder particularly of dopaminergic neurons in the substantia nigra, resulting in impaired spontaneous movement. PARK6 is a rare autosomal-recessively inherited disorder, mimicking the clinical picture of PD with earlier onset and slower progression. Genetic data demonstrated PARK6 to be caused by mutations in the protein PINK1, which is localized to mitochondria and has a serine-threonine kinase domain. To study the effect of PINK1 mutations on oxidative stress, we used primary fibroblasts and immortalized lymphoblasts from three patients homozygous for G309D-PINK1. Oxidative stress was evident from increases in lipid peroxidation and in antioxidant defenses by mitochondrial superoxide dismutase and glutathione. Elevated levels of glutathione reductase and glutathione-S-transferase were also observed. As a putative cause of oxidation, a mild decrease in complex I activity and a trend to superoxide elevation were detectable. These data indicate that PINK1 function is critical to prevent oxidative damage and that peripheral cells may be useful for studies of progression and therapy of PARK6. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据