4.6 Article

Optimum design of resilient sliding isolation system for seismic protection of equipments

期刊

BULLETIN OF EARTHQUAKE ENGINEERING
卷 5, 期 1, 页码 85-103

出版社

SPRINGER
DOI: 10.1007/s10518-006-9010-5

关键词

equipment; seismic isolation; resilient sliding system; optimum design; shake-table test

向作者/读者索取更多资源

Seismic isolation is one of the effective methods to protect equipments. It helps to keep seismic response accelerations in equipment below its allowable limits. Among different types of isolation systems, the combination of restoring spring and slider, also called as resilient sliding isolation (RSI) system, is the one which has been effectively used for protection of equipment. Principal design parameters for this type of isolation system are period of system (stiffness of spring) and friction coefficient of slider. There may be number of combinations of these design parameters which can enable the isolated equipment to remain functional during and after the predicted seismic event. The optimum design of RSI system can be considered as the one which maintains the response acceleration in the equipment below its allowable limit and at the same time keeps the relative displacement between floor and the equipment to the minimum. This study deals with optimum design of resilient sliding system. First the RSI system is modeled analytically by (i) precise and (ii) simplified SDOF models. The accuracy of the model is then validated by shaking table tests. The validated simplified SDOF model is then used to determine optimum design parameters for different levels of allowable accelerations. Results show that the optimum period decreases and the optimum friction coefficient increases with higher allowable acceleration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据