4.2 Article

The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells

期刊

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2710.2007.00796.x

关键词

drug delivery; human breast carcinoma; nanoparticle; paclitaxel; radiation

向作者/读者索取更多资源

Background and Objective: The inability of radiotherapy to eradicate completely certain human tumours may be due to the presence of resistant hypoxic cells. Several studies have confirmed the radiosensitizing effect of paclitaxel, a microtubular inhibitor. The object of this study was to evaluate the physicochemical characteristics of paclitaxel-loaded nanoparticles, and determine the ability of the released paclitaxel to radiosensitize hypoxic human breast carcinoma cells (MCF-7) with respect to radiation dose. Methods: The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel were prepared by o/w emulsification-solvent evaporation method. The morphology of the paclitaxel-loaded nanoparticles was investigated by scanning electron microscopy. The drug encapsulation efficiency (EE) and in vitro release profile were measured by high-performance liquid chromatography. Cell cycle was evaluated by flow cytometry. Cell viability was measured by the ability of single cells to form colonies in vitro. Results: The prepared nanoparticles were spherical with diameter between 200 and 800 nm. The EE was 85.5%. The drug release pattern was biphasic with a fast release rate followed by a slow one. Co-culture of human breast carcinoma cells (MCF-7) with paclitaxel-loaded nanoparticles demonstrated that released paclitaxel retained its bioactivity to block cells in the G2/M phase of the cell cycle and effectively sensitized hypoxic MCF-7 cells to radiation with radiosensitivity shown to be dependent of radiation dose at levels of dosages studied. The sensitizer enhancement ratio for paclitaxe-loaded nanoparticles at 10% survival is approximately 1.4. Conclusion: This work has demonstrated that paclitaxel can be effectively released from a biodegradable PLGA nanoparticle delivery system while maintaining potent combined cytotoxic and radiosensitizing abilities for hypoxic tumour cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据