4.5 Article

WNK4 enhances TRPV5-mediated calcium transport:: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 292, 期 2, 页码 F545-F554

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00187.2006

关键词

epithelial calcium channel; CaT1; calcium reabsorption; WNK1; TRPV6

向作者/读者索取更多资源

The epithelial Ca2+ channel TRPV5 serves as a gatekeeper for active Ca2+ reabsorption in the distal convoluted tubule and connecting tubule of the kidney. WNK4, a protein serine/threonine kinase with gene mutations that cause familial hyperkalemic hypertension (FHH), including a subtype with hypercalciuria, is also localized in the distal tubule of the nephron. To understand the role of WNK4 in modulation of Ca2+ reabsorption, we evaluated the effect of WNK4 on TRPV5-mediated Ca2+ transport in Xenopus laevis oocytes. Coexpression of TRPV5 with WNK4 resulted in a twofold increase in TRPV5-mediated Ca2+ uptake. The increase in Ca2+ uptake was due to the increase in surface expression of TRPV5. When the thiazide-sensitive Na+-Cl- cotransporter NCC was coexpressed, the effect of WNK4 on TRPV5 was weakened by NCC in a dose-dependent manner. Although the WNK4 disease-causing mutants E562K, D564A, Q565E, and R1185C retained their ability to upregulate TRPV5, the blocking effect of NCC was further strengthened when wild-type WNK4 was replaced by the Q565E mutant, which causes FHH with hypercalciuria. We conclude that WNK4 positively regulates TRPV5-mediated Ca2+ transport and that the inhibitory effect of NCC on this process may be involved in the pathogenesis of hypercalciuria of FHH caused by gene mutation in WNK4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据