4.7 Article

Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization

期刊

PHYSIOLOGIA PLANTARUM
卷 129, 期 2, 页码 320-333

出版社

WILEY
DOI: 10.1111/j.1399-3054.2006.00812.x

关键词

-

向作者/读者索取更多资源

Plant hormones, including auxins, might be signals during the establishment of an arbuscular mycorrhizal (AM) symbiosis. Here, we report on the concentrations of three auxins native to nasturtium (Tropaeolum majus L.) during early AM development. Indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and phenylacetic acid (PAA) were previously identified as endogenous compounds in this species by full-scan gas chromatography-mass spectrometry. All auxinic compounds were influenced by AM colonization but showed completely different patterns. At very early stage, free IAA and IBA were lower in infected than in control roots, whereas PAA concentration was higher in infected roots than in controls. At later stages, PAA was reduced in colonized roots, whereas, especially, IBA was increased in colonized roots compared with controls. Measurement of total auxins confirmed a complex regulation pattern for the three compounds. In hyphae of Glomus intraradices, none of the auxins was detectable. Biosynthesis of the three auxins was measured using heavy labeled isotopes as precursors in control and AM-inoculated roots. While not much difference was found in the IAA labeling pattern between controls and AM-inoculated roots at both time points, IBA synthesis was slightly higher in AM-inoculated roots. Double labeling experiments showed that two distinct pathways, a tryptophan-dependent and a tryptophan-independent biosynthetic pathway contribute to the synthesis of IAA in T. majus roots. Because T. majus is difficult to genetically manipulate, we have used tobacco plants transformed with the auxin-inducible promoter GH3 fused to the beta-glucuronidase (GUS) reporter gene to investigate whether AM structures would co-localize to cells harboring the auxin-inducible promoter. Although the GUS activity increased significantly in AM-inoculated roots, there was no obvious correlation between GH3::GUS expression and fungal structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据