4.6 Article Proceedings Paper

Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 578, 期 3, 页码 633-640

出版社

WILEY
DOI: 10.1113/jphysiol.2006.124719

关键词

-

向作者/读者索取更多资源

Several members of the CLC family of Cl- channels and transporters are expressed in vesicles of the endocytotic-lysosomal pathway, all of which are acidified by V-type proton pumps. These CLC proteins are thought to facilitate vesicular acidification by neutralizing the electric current of the H+-ATPase. Indeed, the disruption of ClC-5 impaired the acidification of endosomes, and the knock-out (KO) of ClC-3 that of endosomes and synaptic vesicles. KO mice are available for all vesicular CLCs (ClC-3 to ClC-7), and ClC-5 and ClC-7, as well as its beta-subunit Ostm1, are mutated in human disease. The associated mouse and human pathologies, ranging from impaired endocytosis and nephrolithiasis (ClC-5) to neurodegeneration (ClC-3), lysosomal storage disease (ClC-6, ClC-7/Ostm1) and osteopetrosis (ClC-7/Ostm1), were crucial in identifying the physiological roles of vesicular CLCs. Whereas the intracellular localization of ClC-6 and ClC-7/Ostm1 precluded biophysical studies, the partial expression of ClC-4 and -5 at the cell surface allowed the detection of strongly outwardly rectifying currents that depended on anions and pH. Surprisingly, ClC-4 and ClC-5 (and probably ClC-3) do not function as Cl- channels, but rather as electrogenic Cl--H+ exchangers. This hints at an important role for luminal chloride in the endosomal-lysosomal system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据