4.8 Article

Water-filled single-wall carbon nanotubes as molecular nanovalves

期刊

NATURE MATERIALS
卷 6, 期 2, 页码 135-141

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1823

关键词

-

向作者/读者索取更多资源

It is known that at low temperature, water inside single-wall carbon nanotubes (water-SWNTs) undergoes a structural transition to form tube-like solid structures. The resulting ice NTs are hollow cylinders with diameters comparable to those of typical gas molecules. Hence, the gas-adsorption properties of ice- and water-SWNTs are of interest. Here, we carry out the first systematic investigation into the stability of water-SWNTs in various gas atmospheres below 0.1 MPa by means of electrical resistance, X-ray diffraction, NMR measurements and molecular dynamics calculations. It is found that the resistivity of water-SWNTs exhibits a significant increase in gas atmospheres below a critical temperature T-c, at which a particular type of atmospheric gas molecule enters the SWNTs in an on-off fashion. On the basis of this phenomenon, it is proposed that water-SWNTs can be used to fabricate a new type of molecular nanovalve.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据