4.5 Article Proceedings Paper

Micro-computed tomography (μ-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-006-0683-8

关键词

-

向作者/读者索取更多资源

This work studies the influence of dynamic biomimetic coating procedures on the growth of bone-like apatite layers at the surface of starch/polycaprolactone (SPCL) scaffolds produced by a 3D-plotting technology. These systems are newly proposed for bone Tissue Engineering applications. After generating stable apatite layers through a sodium silicate-based biomimetic methodology the scaffolds were immersed in Simulated Body Fluid solutions (SBF) under static, agitation and circulating flow perfusion conditions, for different time periods. Besides the typical characterization techniques, Micro-Computed Tomography analysis (mu -CT) was used to assess scaffold porosity and as a new tool for mapping apatite content. 2D histomorphometric analysis was performed and 3D virtual models were created using specific softwares for CT reconstruction. By the proposed biomimetic routes apatite layers were produced covering the interior of the scaffolds, without compromising their overall morphology and interconnectivity. Dynamic conditions allowed for the production of thicker apatite layers as consequence of higher mineralizing rates, when comparing with static conditions. mu -CT analysis clearly demonstrated that flow perfusion was the most effective condition in order to obtain well-defined apatite layers in the inner parts of the scaffolds. Together with SEM, this technique was a useful complementary tool for assessing the apatite content in a non-destructive way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据