4.7 Article

Halothane binding proteome in human brain cortex

期刊

JOURNAL OF PROTEOME RESEARCH
卷 6, 期 2, 页码 582-592

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr060311u

关键词

anesthetic; protein binding; protein expression; 2D gel electrophoresis; CNS; soluble proteins; membrane proteins; functional classification; network analysis

资金

  1. NIGMS NIH HHS [GM 51595] Funding Source: Medline

向作者/读者索取更多资源

Inhaled anesthetics bind specifically to a wide variety of proteins in the brain. This set of proteins must include those that contribute to the physiological and behavioral phenotypes of anesthesia and the related side effects. To identify the anesthetic-binding targets and functional pathways associated with these targets in human brain, halothane photolabeling and two-dimensional (2D) gel electrophoresis were used. Both membrane and soluble proteins from human temporal cortex were prepared. More than 300 membrane and 400 soluble protein spots were detected on the stained blots, of which 23 membrane and 34 soluble proteins were labeled by halothane and identified by mass spectroscopy. Their functional classification reveals five groups, including carbohydrate metabolism, protein folding, oxidative phosphorylation, nucleoside triphosphatase, and dimer/kinase activity with different correlative stringency. When network analysis of the interaction between these protein molecules is used, the weighted interaction accentuates the cellular protein components important in cell growth and proliferation, cell cycle and cell death, and cell-cell signaling and interactions, although no pathway was specific. This study provides evidence for multiple anesthetic binding targets and suggests potential pathways involved in their actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据