4.5 Article

Signal processing issues in diffraction and holographic 3DTV

期刊

SIGNAL PROCESSING-IMAGE COMMUNICATION
卷 22, 期 2, 页码 169-177

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.image.2006.11.010

关键词

diffraction; holography; 3DTV; sampling; fractional Fourier transform

向作者/读者索取更多资源

Image capture and image display will most likely be decoupled in future 3DTV systems. Due to the need to convert abstract representations of 3D images to display driver signals, and to explicitly consider optical diffraction and propagation effects, it is expected that signal processing issues will be of fundamental importance in 3DTV systems. Since diffraction between two parallel planes can be represented as a 2D linear shift-invariant system, various signal processing techniques naturally play an important role. Diffraction between tilted planes can also be modeled as a relatively simple system, leading to efficient discrete computations. Two fundamental problems are digital computation of the optical field arising from a 3D object, and finding the driver signals for a given optical display device which will then generate a desired optical field in space. The discretization of optical signals leads to several interesting issues; for example, it is possible to violate the Nyquist rate while sampling, but still achieve full reconstruction. The fractional Fourier transform is another signal processing tool which finds applications in optical wave propagation. (C) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据