4.6 Article

Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells

期刊

ANGIOGENESIS
卷 15, 期 1, 页码 47-57

出版社

SPRINGER
DOI: 10.1007/s10456-011-9242-0

关键词

Angiogenesis; TRPM7; Magnesium; Vascular endothelial cells

资金

  1. FIRST-Universita di Milano
  2. ESA

向作者/读者索取更多资源

Evidence has accumulated to suggest that magnesium might play a role in controlling angiogenesis. Since microvascular endothelial cells are protagonists in this process, we investigated the behavior of these cells cultured in low extracellular magnesium or silenced for its transporter Transient Receptor Potential Melastatin (TRPM)7, essential for cellular magnesium homeostasis. In particular, we focused on some crucial steps of the angiogenic process, i.e. proliferation, migration, protease production and organization in tridimensional structures. Silencing TRPM7 mimics the effects of low extracellular magnesium on human microvascular endothelial cells (HMEC). Indeed, while no effects were observed on the production of metalloproteases and on tridimensional organization on matrigel, both magnesium deficiency and silencing of TRPM7 impair cell migration and inhibit growth by arresting the cells in the G0/G1 and G2/M phases of the cell cycle. Since low extracellular magnesium markedly decreases TRPM7 in HMEC, we suggest that TRPM7 downregulation might mediate low magnesium-induced inhibition of cell growth and migration. Human endothelial cells from the umbilical vein are growth inhibited by low magnesium and growth stimulated after TRPM7 silencing. An impairment of ERK phosphorylation in HMEC silencing TRPM7 is responsible, in part, for the different proliferative behavior of these two cell types. We broadened our studies also to endothelial colony-forming cells and found that they are sensitive to fluctuations of the concentrations of extracellular magnesium, while their proliferation rate is not modulated by TRPM7 silencing. Our results point to magnesium and TRPM7 as a modulators of the angiogenic phenotype of microvascular endothelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据