4.6 Article

Nanometer copper-tin alloy anode material for lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 52, 期 7, 页码 2447-2452

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2006.08.055

关键词

Cu-Sn alloy anode; microemulsion; nanometer materials; lithium-ion batteries

向作者/读者索取更多资源

Nanometer copper-tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper-tin alloy with particle size of 50-60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0-1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper-tin alloy anode. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据