4.8 Article

Architectural-level power optimization of microcontroller cores in embedded systems

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 54, 期 1, 页码 680-683

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2006.885450

关键词

automotive electronics; CMOS; embedded systems; hardware design languages (HDLs); low power; microcontrollers

向作者/读者索取更多资源

Power saving is becoming one of the major design drivers in electronic systems embedding microcontroller cores. Known microcontrollers typically save power at the expense of reduced computational capability. With reference to an 8051 core, this paper presents a novel clustered clock gating to increase power efficiency at architectural level without performance loss and preserving the reusability of the macrocell. Different from known clustered-gating strategies where the number of clusters is fixed a priori, the optimal cluster organization is derived, considering both the macrocell complexity and switching activity. When implementing the 8051 core in CMOS technology, the proposed approach leads to a 37% power saving, which is higher than the 29% permitted by automatic-clock-gating insertion in commercial computer-aided design tools or the 10% of state-of-the-art clustered-gating strategies. To assess its full functionality, the power-optimized cell has been proved in silicon that is embedded in an automotive system for sensors interface/control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据