4.5 Article Proceedings Paper

The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-006-0705-6

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council [JF20604] Funding Source: Medline

向作者/读者索取更多资源

Current understanding of the mechanisms involved in ossesoinegration following implantation of a biomaterial has led to an emphasis being placed on the modification of material topography to control interface reactions. Recent studies have inferred nanoscale topography as an important mediator of cell adhesion and differentiation. Biomimetic strategies in orthopaedic research aim to exploit these influences to regulate cellular adhesion and subsequent bony tissue formation. Here experimental topographies of nanoscale pits demonstrating varying order have been fabricated by electron-beam lithography in (poly)carbonate. Osteoblast adhesion to these nanotopographies was ascertained by quantification of the relation between adhesion complex formation and total cell area. This study is specifically concerned with the effects these nanotopographies have on adhesion formation in S-phase osteoblasts as identified by BrdU incorporation. Nanopits were found to reduce cellular spreading and adhesion formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据