4.3 Article Proceedings Paper

A new approach to potential fitting using neural networks

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2006.11.040

关键词

neural network; tight-binding; empirical potentials

向作者/读者索取更多资源

A methodology is presented for developing transferable empirical potential functions without following the usual procedure of postulating a functional form. Instead, a neural network (NN) is employed to learn the functional relationships of potential energy surfaces from the local geometric arrangement of atoms. The methodology is illustrated by training the NN model on tens of thousands of individual data points derived from the tight-binding (TB) method for a wide range of silicon systems including both small clusters and bulk structures. Comparisons of the potential's properties with experimental data, quantum methods and other Si potentials have been made. The NN model successfully fitted energy variations of the different test cases as a function of bond distances, bond angles, lattice constants and elastic properties for both equilibrium and non-equilibrium small cluster and bulk structures. This indicates a robust and consistent methodology for fitting empirical potentials which can be applied to a wide range of materials independent of the type of bonding or their crystal structure. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据