4.6 Article

Magnetic resonance imaging of in vitro glioma cell invasion

期刊

JOURNAL OF NEUROSURGERY
卷 106, 期 2, 页码 306-313

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/jns.2007.106.2.306

关键词

glioma; cell invasion; magnetic resonance imaging; cellular imaging

向作者/读者索取更多资源

Object. An understanding of single glioma cell invasion has been limited by the static picture provided by histological studies. The ability to nondestructively assess cell invasion dynamically in a full 3D volume would improve the quality and quantity of information available from both in vivo and in vitro experiments. The purpose of this study was to observe glioma cell invasion in a 3D in vitro model using a nucroimaging protocol at 1.5 tesla and to assess the uptake of micron-sized particles of iron oxide (MPIO) and the consequent effects on cell function. Methods. Rat C6 glioma cells were labeled with MPIO to a sufficient extent to allow single cell detection in vitro without significant effects on cell proliferation or plating efficiency. When placed on agar-coated plates, the cells formed stable multicellular tumor spheroids (MCTSs), which were embedded in collagen type I gel and serially visualized using magnetic resonance (MR) imaging and phase-contrast microscopy over 8 days. The MCTSs initially appeared as large susceptibility artifacts on MR images, but within 2 days, as cells moved away from the main MCTS, small discrete areas of signal loss, possibly due to single cells, could be observed and tracked. Conclusions. Glioma cell invasion can be nondestructively observed using MR imaging. The sensitivity of MR imaging, along with its ability to represent full 3D volumes noninvasively over time, makes it ideal for longitudinal in vivo cell tracking studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据