4.6 Article

Human pharmaceuticals, antioxidants, and plasticizers in wastewater treatment plant and water reclamation plant effluents

期刊

WATER ENVIRONMENT RESEARCH
卷 79, 期 2, 页码 156-167

出版社

WATER ENVIRONMENT FEDERATION
DOI: 10.2175/106143006X111961

关键词

pharmaceutical; antioxidant; personal care product ingredient; reclaimed water; wastewater; plasticizer

向作者/读者索取更多资源

The primary objective of this study was to determine the presence of unregulated organic chemicals in reclaimed water using complementary targeted and broad spectrum approaches. Eleven of 12 targeted human pharmaceuticals, antioxidants, and plasticizers, and 27 tentatively identified non-target organic chemicals, were present in secondary effluent entering tertiary treatment trains at a wastewater treatment plant and two water reclamation facilities. The removal of these compounds by three different tertiary treatment trains was investigated: coagulant-assisted granular media filtration (California Title-22 water, 22 CCR 60301-60357; Barclay [2006]), lime clarification/reverse osmosis (lime/RO), and microfiltration-reverse osmosis (MF/RO). Carbamazepine, clofibric acid, gemfibrozil, ibuprofen, p-toluenesulfonamide, caffeine, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and N-butyl benzenesulfonamide (N-BBSA) were present at low to high nanogram-per-liter levels in Title 22 water. The lime/RO product waters contained lower concentrations of clofibric acid, ibuprofen, caffeine, BHA, and N-BBSA (< 10 to 71 ng/L) than their Title 22 counterparts. The MF/RO treatment reduced concentrations to levels below their detection limits, although BHT was present in MF/RO product water from one facility. The presence of the target analytes in two surface waters used as raw drinking water sources and a recharged groundwater was also examined. Surface waters used as raw drinking water sources contained caffeine, BHA, BHT, and N-BBSA, while recharged groundwater contained BHT, BHA, and N-BBSA. Nontarget compounds in recharged groundwater appeared to be attenuated with increased residence time in the aquifer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据