4.5 Article

Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol

期刊

PLASMA CHEMISTRY AND PLASMA PROCESSING
卷 27, 期 1, 页码 13-22

出版社

SPRINGER
DOI: 10.1007/s11090-006-9039-x

关键词

volatile organic compound abatement; non-thermal plasma; dielectric barrier discharge; plasma-assisted catalysis; sintered metal fibers

向作者/读者索取更多资源

Catalytic gas-phase abatement of air containing 250 ppm of isopropanol (IPA) was carried out with a novel dielectric barrier discharge (DBD) reactor with the inner catalytic electrode made of sintered metal fibers (SMF). The optimization of the reactor performance was carried out by varying the voltage from 12.5 to 22.5 kV and the frequency in the range 200-275 Hz. The performance was significantly improved by modifying SMF with Mn and Co oxide. Under the experimental conditions used, the MnOx/SMF showed a higher activity towards total oxidation of IPA as compared to CoOx/SMF and SMF electrodes. The complete destruction of 250 ppm of IPA was attained with a specific input energy of similar to 235 J/L using the MnOx/SMF catalytic electrode, whereas, the total oxidation was achieved at 760 J/L. The better performance of the MnOx/SMF compared to other catalytic electrodes suggests the formation of short-lived active species on its surface by the in-situ decomposition of ozone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据