4.4 Article

Tarantula toxins interacting with voltage sensors in potassium channels

期刊

TOXICON
卷 49, 期 2, 页码 213-230

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.toxicon.2006.09.024

关键词

voltage-sensor paddle; membrane partitioning; potassium channel structure; hanatoxin; SGTx1; VSTx1

资金

  1. Intramural NIH HHS [ZIA NS002945-13] Funding Source: Medline

向作者/读者索取更多资源

Voltage-activated ion channels open and close in response to changes in membrane voltage, a process that is crucial for electrical signaling in the nervous system. The venom from many poisonous creatures contains a diverse array of small protein toxins that bind to voltage-activated channels and modify the gating mechanism. Hanatoxin and a growing number of related tarantula toxins have been shown to inhibit activation of voltage-activated potassium (K(v)) channels by interacting with their voltage-sensing domains. This review summarizes our current understanding of the mechanism by which these toxins alter gating, the location of the toxin receptor within K(v) channels and the disposition of this receptor with respect to the lipid membrane. The conservation of tarantula toxin receptors among voltage-activated ion channels will also be discussed. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据