4.5 Article

Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures

出版社

ASME
DOI: 10.1115/1.2335852

关键词

-

向作者/读者索取更多资源

Thermomechanical models are presented for the building of thin-walled structures by laser-based solid freeform fabrication (SFF) processes. Thermal simulations are used to develop quasi-non-dimensional plots (termed process maps) that quantify the effects of changes in wall height, laser power, deposition speed, and part preheating on thermal gradients, with the goal of limiting residual stresses in manufactured components. Mechanical simulations are used to demonstrate the link between thermal gradients and maximum final residual stresses. The approach taken is analogous to that taken in previous research by the authors in developing process maps for melt pool length, for maintaining an optimal melt pool size during component fabrication. Process maps are tailored for application to the laser engineered net shaping process; however the general approach, insights, and conclusions are applicable to most SFF processes involving a moving heat source, and to other laser-based fusion processes. Results from the residual stress simulations identify two mechanisms for reducing residual stresses and quantify maximum stress reductions achievable through manipulation of all process variables. Results from thermal gradient and melt pool length process maps are used to identify a manufacturing strategy for obtaining a consistent melt pool size while limiting residual stress in a thin-walled part.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据